Nikola Kasabov, Knowledge Engineering and Discovery Research Institute, Auckland University of Technology, Auckland, New Zealand (Ed.)

Springer Handbook of Bio-/Neuroinformatics

This *Springer Handbook of Bio-/Neuroinformatics* is the first published book in one volume that explains together the basics and the state-of-the-art of two major science disciplines in their interaction and mutual relationship, namely: bioinformatics and neuroinformatics. The text is organized in three groups of parts: foundations, bioinformatics and neuroinformatics. Each group consists of three parts: introduction to the subject area; presentation of methods and systems and advanced science and technology. Informatics is the science of information. Part A covers general informatics methods and techniques. They include methods of statistical learning, data mining, machine learning, knowledge engineering, neural networks, evolutionary computation, chaos theory, quantum computation, and many more. These methods have been widely used in bioinformatics and neuroinformatics studies and technological developments.

Bioinformatics is the area of science that is concerned with the information processes in biology and the development and applications of methods, tools and systems for storing and processing of biological information in order to facilitate new knowledge discovery.

Neuroinformatics is concerned with the information processes in the brain and the nervous system and consequently with the development of methods and system for storing and processing such information, ultimately leading to a better understanding, modeling and curing the brain and the nervous system.

Part A Understanding Information Processes in Biological Systems
Part B Molecular Biology, Genome and Proteome Informatics
Part C Machine Learning Methods
Part D Modeling Regulatory Networks: The Systems Biology Approach
Part E Bioinformatics Databases and Ontologies
Part F Bioinformatics in Medicine, Health and Ecology
Part G Information Processes in the Brain and the Nervous System
Part H Advanced Signal Processing Methods for Brain Signal Analysis
Part I Information Modeling of Perception, Sensation and Cognition
Part J Neuroinformatics Databases and Ontologies
Part K Information Modeling for Brain Diseases
Part L Nature Inspired Integrated Information Technologies
Appendix A Methods of Information Science
Appendix B The Human Genome
Appendix C Brain Genes and Diseases
Glossary

Due March 2013

ISBN Print 978-3-642-30573-3
ISBN eBook 978-3-642-30574-0

349.00 EUR
479.00 USD
314.50 GBP

Detailed Contents ➔ overleaf
Table of Contents

Chap. 1 Understanding Nature – Symbiosis of Information Science, Bioinformatics and Neuroinformatics

Part A Understanding Information Processes in Biological Systems
Chap. 2 Information Processing at the Cellular Level. - Chap. 3 Integrated Approaches for Understanding the Cell. - Chap. 4 Information Processing at the Genomics Level. - Chap. 5 Understanding Information Processes at the Proteomics Level. - Chap. 6 Pattern Formation and Animal Morphogenesis. - Chap. 7 Understanding Evolving Bacteria Colonies

Part B Molecular Biology, Genome and Proteome Informatics
Chap. 8 Exploring Interactions and Structural Organization of Genomes.- Chap. 9 Detecting microRNA Signatures Using Gene Expression Analysis.- Chap. 10 Bioinformatics Methods to Discover Cis-Regulatory Elements.- Chap. 11 Protein Modeling and Structural Prediction

Part C Machine-Learning Methods
Chap. 12 Machine Learning Methodology in Bioinformatics.- Chap. 13 Case-Based Reasoning for Biomedical Informatics and Medicine.- Chap. 14 Analysis of Multiple DNA Microarray Datasets.- Chap. 15 Fuzzy Logic and Rule-Based Methods in Bioinformatics.- Chap. 16 Phylogenetic Cladograms: Understanding and Learning from Biomedical Data.- Chap. 17 Understanding Protein Folding Modeling.- Chap. 18 Kernel Methods and Applications

Part D Modeling Regulatory Networks: The Systems Biology Approach
Chap. 19 Path Finding in Biological Networks.- Chap. 20 Inferring Transcription Networks from Data.- Chap. 21 Computational Methods for Analysis of Transcriptional Regulation.- Chap. 22 Inferring Genetic Networks.- Chap. 23 Structural Pattern Discovery.- Chap. 24 Molecular Networks – Representation and Analysis.- Chap. 25 Computational Pipeline to Handle Large Scale Sequencing Data

Part E Bioinformatics Databases and Ontologies
Chap. 26 Bioinformatics Databases.- Chap. 27 Ontologies for Bioinformatics

Part F Bioinformatics in Medicine, Health and Ecology
Chap. 28 Statistical Signal Processing Models And Methods.- Chap. 29 Epigenetics.- Chap. 30 Control of Autoimmune Diseases.- Chap. 31 Nutrigenomics.- Chap. 32 Bioinformatics and Nanotechnologies: Nanomedicine.- Chap. 33 nformation Modeling Technologies for Personalized Medicine.- Chap. 34 Health Informatics.- Chap. 35 Ecological Informatics

Part G Understanding Information Processes in the Brain and the Nervous System
Chap. 36 Information Processing in Synapses.- Chap. 37 Spiking Neural Networks.- Chap. 38 Statistical Methods for fMRI Activation Detection.- Chap. 39 Computational Models of Abnormal Neural Oscillations.- Chap. 40 Understanding the Brain via fMRI Classification

Part H Advanced Signal-Processing Methods for Brain Signal Analysis and Modeling
Chap. 41 Nonlinear Adaptive Filtering in Kernel Spaces.- Chap. 42 Analysis of Multiple Spike Trains.- Chap. 43 Adaptive Multiscale Time-Frequency Analysis

Part I Information Modeling of Perception, Sensation and Cognition
Chap. 44 Modeling Vision with the Neocognitron.- Chap. 45 Information Processing in the Gustatory System.- Chap. 46 EEG Signal Processing for Brain Computer Interfaces.- Chap. 47 Spiking Neural Networks.- Chap. 48 Neurocomputational Models of Natural Language

Part J Neuroinformatics Databases and Ontologies
Chap. 49 Ontologies and Machine Learning Systems.- Chap. 50 Integration of Large-Scale Neuroinformatics

Part K Information Modeling for Brain Diseases
Chap. 51 Alzheimer’s Disease.- Chap. 52 Integrating data for Modeling Biological Complexity.- Chap. 53 A Machine Learning Pipeline .- Chap. 54 Modeling Gene-Dependent Dynamics of Cortex and Epilepsy.- Chap. 55 Information Methods for Predicting Stroke.- Chap. 56 Recognition of Rehabilitation Actions

Part L Nature Inspired Integrated Information Technologies
Chap. 57 Brain-Like Robotics.- Chap. 58 Developmental Learning for User Activities.- Chap. 59 Quantum and Biocomputing - Common Notions and Targets.- Chap. 60 Brain-, Gene-, and Quantum-Inspired Computational Intelligence.- Chap. 61 The Brain and Creativity

Appendix A Methods of Information Science.- Appendix B The Human Genome.- Appendix C Brain Genes and Diseases

Glossary.- Acknowledgements.- About the Authors.- Subject Index