
International Journal of Neural Systems, Vol. 22, No. 4 (2012) 1250012 (16 pages)
c© World Scientific Publishing Company

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

AMMAR MOHEMMED and STEFAN SCHLIEBS
Knowledge Engineering and Discovery Research Institute

Auckland University of Technology, New Zealand
E-mail: amohemme@aut.ac.nz, sschlieb@aut.ac.nz

SATOSHI MATSUDA

Department of Mathematical Information Engineering
Nihon University, Japan

E-mail: matsuda.satoshi@nihon-u.ac.jp

NIKOLA KASABOV

Knowledge Engineering and Discovery Research Institute
Auckland University of Technology, New Zealand

Institute for Neuroinformatics
ETH and University of Zurich, Switzerland

E-mail: nkasabov@aut.ac.nz

Received (to be inserted
Revised by Publisher)

Spiking Neural Networks (SNN) were shown to be suitable tools for the processing of spatio-temporal
information. However, due to their inherent complexity, the formulation of efficient supervised learning
algorithms for SNN is difficult and remains an important problem in the research area. This article
presents SPAN - a spiking neuron that is able to learn associations of arbitrary spike trains in a su-
pervised fashion allowing the processing of spatio-temporal information encoded in the precise timing
of spikes. The idea of the proposed algorithm is to transform spike trains during the learning phase
into analog signals so that common mathematical operations can be performed on them. Using this
conversion, it is possible to apply the well-known Widrow-Hoff rule directly to the transformed spike
trains in order to adjust the synaptic weights and to achieve a desired input/output spike behavior of
the neuron. In the here presented experimental analysis, the proposed learning algorithm is evaluated
regarding its learning capabilities, its memory capacity, its robustness to noisy stimuli and its classifica-
tion performance. Differences and similarities of SPAN regarding two related algorithms, ReSuMe and
Chronotron, are discussed.

1. Introduction

Spiking Neural Network (SNN) 1,2,3,4,5 advances the

artificial computation paradigm by comprising tem-

poral computation elements, the spiking neurons,

that are more realistic and biologically plausible.

The synaptic connections between individual spiking

neurons can be carefully modelled in order to exhibit

a rich dynamic behavior with the intention to mimic

the processes observed in biological synapses 6,7. The

salient feature of SNN is the neural code which is

principally based on encoding the information into

stereotypical action potentials called spikes in anal-

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

ogy to the biological brain. However, the way this

information is encoded in the brain is not well known.

Two main approaches are debated; rate coding

and temporal coding. The rate coding paradigm

assumes that the information is represented in the

number of spikes that occur over a certain time pe-

riod 1. Temporal coding, on the other hand, en-

codes the information in the exact timing of indi-

vidual spikes. Substantial empirical evidence sup-

ports the existence of such an encoding in neurol-

ogy 8,9,10,11. For example, in 12 it is shown that

the large memory capacity of the brain is mostly at-

tributed to the precise spike-timing nature of neural

processing. Furthermore, some pattern recognition

tasks such as the recognition of colors, visual pat-

terns, odors and sound qualities can not be easily

solved by rate-based neural models 13. Temporal in-

formation encoding can also reduce the number of

neurons that are necessary to perform a given task 14.

Supported by these observations and facts, this study

will focus on the exact timing of spikes as the infor-

mation encoding principle.

SNN has been employed mainly in neuroscience

as a testbed to model various phenomena exhib-

ited in the brain in order to better understand

the neural information processing and to get in-

sights into brain related disorders 15,16,17,18,19,20.

In addition, SNN has proved itself adequate for

a number of computation and engineering prob-

lems 21,22,23,24,25,26,27,28,29,30,31. It is considered a

suitable computational tool to perform temporal pat-

tern recognition and real-time computation 32,33,34.

However, due to its complexity and due to the

fact that computing with spike trains is not straight-

forward, a number of challenges arise when using

SNN in engineering applications. For example, it is

not possible to add, subtract or multiply spike trains

directly as it is possible with analog signals. Con-

sequently, computing an error signal, a common op-

eration employed in many supervised learning algo-

rithms, can not be performed easily in SNN. The

supervised training of SNN remains an important

problem for the neural network research community.

SpikeProb 14,35 is one of the first supervised

learning algorithms for SNN. It was mainly employed

for the processing of static (non-temporal) datasets.

The method is based on a gradient descent on the

error landscape analogous to the traditional back-

propagation algorithm 40. In SpikeProp, the error is

defined as the temporal difference between a desired

and an actual spike. The algorithm is applied to a

multi-layer feedforward network in which the output

neurons are trained to emit single spikes at desired

firing times. These firing times are associated with

a class label allowing the network to perform a clas-

sification problem. The algorithm is derived analyt-

ically and the discontinuities introduced by thresh-

olding the membrane potential are circumvented by

approximation. It was shown that SpikeProp can

solve nonlinear classification tasks such as the XOR,

Iris, and Wisconsin classification problems 14. The

algorithm was modified in a number of studies. In 41,

a momentum term was included in the update of

the weights, while 42 extended the method to learn

additional neural parameters, such as synaptic de-

lays, time constants and neuron thresholds. How-

ever, SpikeProp is able to deal with the firing of a

single spike per neuron only in response to a static

stimulus. Therefore, it can not learn to produce mul-

tiple output spikes in response to a spatio-temporal

stimulus.

Recently, a number of spiking learning algorithms

were proposed for a neural network architecture that

consists of a single spiking neuron connected to many

spike train sources constituting a spatio-temporal

spike patterns 36,37,38. The number of synapses plays

a big role in the function of such networks.

The Tempotron 36 enables a neuron to learn

whether to fire or not to fire in response to a specific

input stimulus. It implements a gradient descent dy-

namics that minimizes an error defined as the differ-

ence between the maximum membrane voltage gen-

erated by an erroneous pattern and the membrane

firing threshold. Tempotron was evaluated to be ef-

ficient in binary temporal classification tasks.

It is worth to note that the above mentioned

two methods are not able to learn reproducing spike

trains. They are designed mainly for pattern recog-

nition tasks, where the class of the pattern is identi-

fied by emitting or not emitting a single spike (Tem-

potron) or based on the timing of a single output

spike (SpikeProp). However, in some applications,

it is desired to reproduce a certain spike behavior,

i.e. learning to generate a desired output pattern

consisting of multiple spikes in response to a specific

input stimulus.

ReSuMe 37,43 is one of the few algorithms to

achieve this task efficiently. It is a supervised learn-

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

Table 1: Tabular description of some of the related supervised learning algorithms for SNN.

Algorithm Characteristics

SpikeProb 35

• Based on the error back-propagation learning algorithm for MLP

• Classification of static data, information is encoded in few spikes

• Multi-layer feedforward architecture (input, hidden and output layers)

• Limited to a single spike per neuron

Tempotron 36

• Minimizes an error based on the membrane potential

• Classification of spatio-temporal spike patterns using single neuron

• Spatio-temporal spike pattern classification

• Binary output (spike or no spike), not suitable for spike sequence learning

• Batch learning

ReSuMe 37

• Based on biological interpretation of Widrow-Hoff rule, STDP and learning window

• Mainly for precise time spike sequence generation

• Spatio-temporal input and output spike patterns

• The learning is local in time and space

Chonotron 38

• Minimizing an error function based on the VP distance metric 39

• For spike sequence generation and classification

• Spatio-temporal input and output spike patterns

• Batch learning (E-learning), online learning (I-learning)

SPAN

• Based on a Hebbian interpretation of the Widrow-Hoff rule and kernel function convolu-
tion

• For spike sequence generation and classification

• Spatio-temporal input and output spike patterns

• Batch or incremental learning

ing algorithm that is based on a learning window con-

cept similar to the Spike Time Dependent Plasticity

(STDP) 1,44,45. The algorithm is described to be bi-

ologically plausible and can learn in an on-line fash-

ion by adjusting the synaptic weights locally in both

space and time. ReSuMe interprets the Widrow-Hoff

rule 46 as an interaction of two biological processes,

i.e. an STDP (Hebbian) process and an anti-STDP

(anti-Hebbian) process. The algorithm was shown to

be efficient in a number of tasks including the learn-

ing of spike sequences and the classification of tem-

poral spike patterns. When employed as the readout

function of a Liquid State Machine (LSM) 33, the

method is able to perform a mapping from any input

spike train to any output spike train or even multiple

output sequences. This capability of ReSuMe allows

its application for parenthetic control systems 47.

We note that ReSuMe learning rule is based on

Widrow-Hoff rule which is interpreted as an interac-

tion of two biological processes: Hebbian and anti-

Hebbian learning. The here proposed rule is also

derived from Widrow-Hoff rule, however, the inter-

pretation is completely different which is based on a

straightforward application of the rule, enabling fur-

ther extension and exploitation of the rich theory of

ANN and minimizing the gap between SNN and the

conventional ANN learning algorithms. This issue is

further discussed in section 4.

A very recent supervised learning algorithm

called Chronotron 48 was proposed by Florian. Sim-

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

ilar to ReSuMe, it is also capable of learning spike

sequence mappings using the precise timing of spikes.

Two versions of the learning rule were proposed,

an analytically-derived one, referred to E-learning,

and one that is biologically plausible, referred to I-

Learning. E-Learning is a gradient-descent optimiza-

tion of the synaptic weights to minimize an error

function defined as the difference between the ac-

tual output spike train and the desired spike train.

The difference is measured using a modified version

of the Victor & Purpura (VP) distance metric 39

that can handles the discontinuities inherent in this

measure. The VP metric is one of the two metrics

commonly used in neurobiology for quantifying the

distance between two spike trains; the other is the

van Rossum metric 49. In contrast to the I-learning

rule, E-learning implements an off-line learning pro-

cess that requires the identification of the firing times

of all spikes in the network in order to compute the

error.

The other version of Chronotron, I-Learning, is

similar to ReSuMe and can be used for on-line learn-

ing. In 48, an extensive analysis was undertaken to

demonstrate the performance of the algorithm re-

garding its learning ability, its memory capacity, its

learning behavior in the context of noisy input pat-

terns and the effect of various parameters. The re-

sults show that E-learning, although being biolog-

ically less plausible, achieves a better performance

in terms of the number of temporal patterns that

can be learned compared to ReSuMe and I-learning.

Table 1 summarises the main characteristics of the

above mentioned algorithms along with the here pro-

posed SPAN algorithm.

In this paper, we propose another supervised

learning algorithm for SNN that enables a single neu-

ron to learn spike pattern associations. We refer to

this learning neuron as SPAN for Spike Pattern As-

sociation Neuron. In the SPAN learning algorithm,

the input, output and desired spike trains are trans-

formed into analog signals by convolving the spikes

with a kernel function. This transformation will sim-

plify the computation of the error signal and, hence,

allows the application of a gradient descent to opti-

mize the synaptic weights.

In 50, the authors used such a signal transforma-

tion along with a Particle Swarm Optimizer in order

to optimize the parameters of dynamic synapses en-

abling the network to learn a desired input/output

mapping of spike trains. However, due to scalabil-

ity issues when training big networks, learning algo-

rithms based on evolutionary computation are less

practical. Therefore, a gradient descent method was

suggested in 51. Preliminary experiments were con-

ducted demonstrating the functioning of the algo-

rithm. In this study, we present a comprehensive

analysis of the SPANmethod along with a theoretical

investigation highlighting the relationship of SPAN

to ReSuMe and Chronotron.

The paper is organized as follows. In the next sec-

tions, we present the derivation of the SPAN learn-

ing rule followed by an experimental analysis of the

learning capabilities, the memory capacity, the ro-

bustness and the classification performance of the

proposed method. Finally, we discuss differences

and similarities of SPAN regarding two related algo-

rithms, namely ReSuMe and Chronotron, and derive

conclusions of the presented study. Future directions

are highlighted at the end.

2. SPAN learning rule

Similar to other supervised training algorithms, the

synaptic weights of the network are adjusted iter-

atively in order to impose a desired input/output

mapping to the SNN. We derive the proposed learn-

ing algorithm from the common Widrow-Hoff rule,

also known as the Delta rule. For a synapse i, it is

defined as:

∆wi = λxi (yd − ya) = λxi∆y (1)

where λ ∈ R is a real-valued positive learning rate,

xi is the input transferred through synapse i, and

yd and ya refer to the desired and the actual neural

output, respectively. Note that ∆y = yd − ya is the

difference or error between the desired and the actual

output of the neuron.

This rule was introduced for traditional neural

networks with linear neurons. For these models, the

input and output corresponds to real-valued vectors.

In SNN however, trains of spikes are passed between

neurons rendering the Widrow-Hoff rule incompati-

ble for SNN. More specifically, if xi, yd and ya were

considered as spike trains s(t) in the form of

s(t) =
∑

f

δ(t− tf) (2)

where tf is the firing time of a spike and δ(·)

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

is the Dirac delta function δ(x) = 1 if x =

0 and 0 otherwise, then the difference between two

spike trains yd and ya does not define a suitable er-

ror landscape which can be minimized by a gradient

descent.

In this paper, we address this issue by propos-

ing the following idea. In order to define the dif-

ference between spike trains, we convolve each spike

sequence with a kernel function κ(t). This is similar

to the binless distance metric used to compare spike

trains 49. We define:

x̃i(t) =
∑

tf
i
∈Fin

κ(t− t
f
i) (3)

ỹd(t) =
∑

tg
d
∈Fd

κ(t− t
g
d) (4)

ỹa(t) =
∑

tha∈Fa

κ(t− tha) (5)

with Fin, Fd and Fa being the input, the desired

and the actual set of spike trains, respectively. By

substituting xi, yd and ya with the kernelized spike

trains x̃i(t), ỹd(t) and ỹa(t), a new learning rule for

a spiking neuron is obtained:

∆wi(t) = λx̃i(t) (ỹd(t)− ỹa(t)) (6)

The equation formulates a real-time learning rule

and so the synaptic weights change over time. By

integrating Eq. 6, we derive the batch version of the

learning rule which is under scrutiny in this paper:

∆wi = λ

∫

∞

0

x̃i(t) (ỹd(t)− ỹa(t)) dt (7)

A variety of kernel functions κ(t) exist such as lin-

ear, (double) exponential, alpha and Gaussian ker-

nels. In this study, we use an α-kernel, α(t) =

e τ−1 t e−t/τH(t), however many other kernels ap-

pear suitable in this context. A convolved spike train

s̃(t) is then given as

s̃(t) =
∑

tf

κ(t− tf)

=
∑

tf

e τ−1 (t− tf) e−
(t−tf)

τ H(t− tf)

(8)

where H(t) refers to the Heaviside function (H(t) =

0 if t < 0 andH(t) = 1 if t ≥ 0) and τ ∈ R is a real-

valued time constant. Using this kernel function,

Eq. 6 is rewritten as follows:

∆wi(t) =

λ
(e

2

)2

∑

g

∑

f

H(t−max{tfi , t
g
d})(t− t

g
d)(t− t

f
i)e

−
2t−t

f
i
−t

g
d

τ

−
∑

h

∑

f

H(t−max{tfi , t
g
a})(t− t

g
d)(t− t

f
i)e

−
2t−t

f
i
−t

g
d

τ

Now we can perform the integration of Eq. 7:

∆wi = λ

∫

∞

0

∆wi(t) dt

= λ
(e

2

)2

∑

g

∑

f

(|tfi − t
g
d|+ τ)e−

|t
f
i
−t

g
d
|

τ

−
∑

h

∑

f

(|tfi − tha |+ τ)e−
|t

f
i
−tha |

τ

(10)

With a simple example, the behavior of the pre-

sented learning rule can be demonstrated. Let us

consider the case where the input, desired and ac-

tual spike trains have only a single spike at ti, td, ta,

respectively and they satisfy ti ≤ td ≤ ta. Eq. 10

then simplifies to:

∆wi = λ
(e

2

)2 [

(td − ti + τ)e−
td−ti

τ

−(ta − ti + τ)e−
ta−ti

τ

]

(11)

and we note that

∆wi

> 0 if td < ta
= 0 if td = ta
< 0 if ta < td

(12)

From Eq. 12 several observations are made:

• if the actual spike occurs later than the de-

sired spike (td < ta), then the synaptic weight

increases and so the output spike will emit ear-

lier,

• conversely, if the actual spike occurs earlier

than the desired firing time (ta < td), then the

synaptic weight decreases and so the output

spike will emit later,

• if the actual spike occurs exactly at the desired

time (ta = td), then the synaptic weight does

not change,

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

Figure 1: Illustration of the proposed learning rule SPAN. See text for detailed explanations of the figure.

• and, the larger the difference between ta and td

is, the larger the size of synaptic weight change

becomes.

Furthermore, we can observe that

• when ta → ∞, which means that no actual

spike occurs, the synaptic weight increases to

promote the emission of an output spike since

td < ta holds,

• when td → ∞, which means no output spike is

desired, the synaptic weight decreases to pro-

mote a suppression of an output spike since

ta < td holds.

These observations are intuitively valid and we

can expect, by repeating these processes, that the

learning rule drives the post-synaptic neuron to emit

a spike at the desired time. Furthermore, we note

that the smaller the value of td − ti or ta − ti is, the

larger the value of each term in the square brackets

of Eq. 11 becomes. That means that only if the input

spike at ti is temporally close to the desired or actual

spike at td or ta, i.e. spike ti is the cause of spike

td or spike ta, the corresponding synaptic weight wi

changes significantly.

Weights are updated in an iterative process. In

each iteration (or epoch), all input patterns are pre-

sented sequentially to the system. For each pattern

the ∆wi are computed and accumulated. After the

presentation of all patterns, the weights are updated

to wi(e + 1) = wi(e) + ∆wi, where e is the current

epoch of the learning process.

We note that the algorithm is capable of train-

ing the weights of a single neural layer only. Related

methods such as ReSuMe 43 and the Chronotron 38

exhibit similar restrictions. Therefore, a combi-

nation with the well-known Liquid State Machine

(LSM) approach 33 was suggested in these studies.

By transforming the input into a higher-dimensional

space, the output of the LSM can potentially be

mapped to any desired spike train.

Figure 1 illustrates the functioning of the pro-

posed SPAN learning method. An output neuron is

connected to three input neurons through three ex-

citatory synapses with randomly initialized weights.

For the sake of simplicity, each input sequence con-

sists of a single spike only. However, the learning

method can also deal with more than one spike per

input neuron. The inputs spike trains si are visual-

ized in Figure 1A. In this example, we intend to train

the output neuron to emit two desired spikes at the

pre-defined time t0d and t1d.

Assume that, as shown in Figure 1B, the pre-

sented stimulus causes the excitation of the output

neuron resulting in the generation of three output

spikes at times t0a, t1a and t2a, respectively. Spike

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

t0a is temporally very close to the desired spike t0d;

spike t1a is undesired and should be suppressed by

the learning method; and spike t2a occurs slightly too

late (t1d < t2a). The evolution of the membrane po-

tential u(t) measured at the output neuron is shown

in middle top diagram of the figure above the actual

and the desired spike trains, cf. Figure 1B.

The lower part in the figure (Figure 1C,D,E) de-

picts a graphical illustration of Equation 7. The in-

put, actual and desired spikes trains are kernelized

using the α-kernel as defined in Eq. 8 (Figure 1B

and C). We define the area under the curve of the

absolute difference |yd(t)−ya(t)| as an error between

actual and desired output:

E =

∫

∞

0

|ỹd(t)− ỹa(t)| dt (13)

Although this error is not used in the computation

of the weight updates ∆wi, this metric is an infor-

mative measure of the achieved training status of the

output neuron.

Figure 1E shows the weight updates ∆wi. We

especially note the large decrease of weight w2. The

input spike train s2 of the third input neuron causes

an undesired spike at t1a and lowering the correspond-

ing synaptic efficacy potentially suppresses this be-

havior. On the other hand, the synaptic weight w0

is increased promoting the triggering of spike t2a at

an earlier time. Finally, weight w1 remains almost

unchanged since t1a ≈ t1d.

Unless otherwise stated, we use the batch version

of the SPAN learning method along with the α-kernel

for spike train convolution in the rest of this paper.

3. Experimental analysis of SPAN

In order to demonstrate the characteristics of the

proposed learning algorithm, we have performed a

number of computer simulations. First, we present

a simple training scenario in which the mapping of

a single input spike pattern to a single target spike

train has to be learned. With this setup we verify

the functioning of the learning algorithm and give

further details on the training process.

In the second experiment, we investigate the ro-

bustness of the learning method. We mimic a real-

world situation by adding a Gaussian noise to the

input spike patterns which increases the difficulty of

the learning task significantly.

The third experiment determines the memory ca-

pacity of SPAN, i.e. how many input spike patterns

can be learned by the neuron. As already established

in 36,38, the capacity of a neuron is dependent on

the number of its synapses. Therefore, the presented

experiment has a very practical background, since

it provides an indication of how many synapses are

necessary to perform a given learning task reliably.

Finally, in the fourth experiment, we apply SPAN

on a classification task using a synthetic benchmark

data set. In this experiment, we demonstrate the po-

tential of SPAN for addressing practical real-world

problems.

3.1. Setup

For our experiments, we employ the Leaky Integrate-

and-Fire (LIF) neuron which is one of the most

widely used spiking neural models 1. It is based on

the idea of an electrical circuit containing a capaci-

tor with capacitance C and a resistor with resistance

R, where both C and R are assumed to be constant.

The dynamics of a neuron i are then described by

the following differential equation:

τm
dui

dt
= −ui(t) +R I

syn
i (t) (14)

The constant τm = RC is called the membrane time

constant of the neuron. Whenever the membrane

potential ui crosses a threshold ϑ from below, the

neuron fires a spike and its potential is reset to a

reset potential ur. Following
1, we define

t
(f)
i : ui(t

(f)) = ϑ, f ∈ {0, . . . , n− 1} (15)

as the firing times of neuron i where n is the number

of spikes emitted by neuron i. It is noteworthy that

the shape of the spike itself is not explicitly described

in the traditional LIF model. Only the firing times

are considered to be relevant.

The synaptic current Isyni of a SPAN neuron i is

modeled using an α-kernel:

I
syn
i (t) =

∑

j

wij

∑

f

α(t− t
(f)
j) (16)

where wij ∈ R is the synaptic weight describing the

strength of the connection between neuron i and its

pre-synaptic neuron j. The α-kernel itself is defined

as

α(t) = e τ−1
s t e−t/τsH(t) (17)

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

Table 2: Tabular description of the experimental setup.

Model Summery

Neural model Leaky integrate-and-fire
Synaptic model α shaped synaptic currents
Input Random input
Connectivity All input neurons are connected to a single output neuron

Neural Model

Type Leaky integrate-and-fire (LIF) neuron
Description Dynamics of membrane potential u(t):

• Spike times: t(f) : u(t(f)) = ϑ

• Sub-threshold dynamics: τm
du
dt

= −u(t) +R Isyn(t)

• Reset & refractoriness: u(t) = ur∀f : t ∈ (t(f), t(f) + τref)

• exact integration with temporal resolution dt

Parameters Membrane time constant τm = 10ms
Membrane resistance R = 333.33MΩ
Spike threshold ϑ = 20mV, reset potential ur = 0mV
Refractory period τref = 3ms
Time resolution dt = 0.1ms, simulation time T = 200ms

Synaptic Model

Type Current synapses with α−function shaped post-synaptic currents (PSCs)

Description Synaptic input current Isyn(t) =
∑

w
∑

f α(t− t(f))

α(t) =

{

e τ−1
s t e−t/τs , if t > 0

0, otherwise

Parameters Synaptic weight w ∈ R, uniformly randomly initialized in [0, 25]
Synaptic time constant τs = 5ms

Input Model

Type Random input
Details Population of 200 input neurons each firing a single spike at a randomly chosen time in the

period (0, T)

where H(t) refers to the Heaviside function and pa-

rameter τs is the synaptic time constant.

We follow the initiative recently proposed in 52

that promotes reproducible descriptions of neural

network models and experiments. The initiative

suggests the use of specifically formatted tables ex-

plaining neural and synaptic models along with their

parametrization. We use a similar setup in all of our

experiments, cf. Table 2. In all experiments, the

network architecture consists of single neuron driven

by n synapses. The input spike patterns stimulating

the neuron are generated randomly. More specifi-

cally, each input spike train consists of a single spike

generated randomly in the time interval (0, 200 ms).

A single spike is chosen for the simplicity of analysis

but more than one spike is also possible. The sim-

ulation is performed using the NEST simulator 53.

We provide the setup details that are specific for a

particular experiment in the individual sections be-

low.

3.2. Output spike sequence learning

The purpose of the first experiment is to demonstrate

the concept of the proposed learning method. The

task is to learn a mapping from a random input spike

pattern to specific target output spike train. This

target consists of five spikes occurring at the times

t0d = 33, t1d = 66, t2d = 99, t3d = 132 and t4d = 165ms.

Initially, the synaptic weights are randomly gener-

ated uniformly in the range (0, 25pA). Over 100

epochs, we allow the output neuron to adjust its con-

nection weights in order to produce the desired out-

put spike train. The experiment is repeated for 100

runs each of them initialized with different random

weights in order to guarantee statistical significance.

In Figure 2, the experimental setup of a typi-

cal run is illustrated. The left side of the diagram

shows the network architecture as defined in the ex-

perimental setup above. The right side shows the

desired target spike train (top) along with the pro-

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

0 50 100 150 200
Time (ms)

The input spike pattern

(A)

.

.

.

(B)

(C)

SPAN

The target spike pattern

0 50 100 150 200
Time (ms)

0

5

10

15

20

Ep
oc

hs

The output spikes

0 20 40 60 80 100
Epochs

0
10
20
30
40
50
60
70
80
90

Er
ro

r (
E)

0 50 100 150 200

input in chronological order

0

5

10

15

20

s
y

n
a

p
ti

c
 w

e
ig

h
t

33 66 99 132 165
t im e in m sec

before learning

after learning

(D)

Figure 2: Learning spike pattern association with 200 input synapses. (A) The neuron learns to map between
spatio-temporal input pattern and output spike train. (B) The development of the output toward the target
pattern for one of the trials. (C) The evolution of the error (computed using Eq. 13) and standard deviation.
(D) The synaptic weights before and after the learning process.

duced spike trains by the output neuron over a num-

ber of learning epochs (bottom). We note that the

output spike trains in early epochs are very differ-

ent from the desired target spike sequence. In later

epochs the output spikes converge towards the de-

sired sequence. Consequently, the error as defined

in Equation 13 decreases in succeeding epochs. We

note that the neuron is able to reproduce the desired

spike output pattern very precisely in less than 20

learning epochs.

Figure 2C shows the evolution of the average er-

ror over the performed 100 runs. We note the expo-

nential decrease of the error. In 97% of all trials the

target spike train could be reproduced in less than

30 epochs and even for the remaining three percent,

the average temporal difference between learned and

desired spike train was less than 0.2 ms.

The effect of the learning algorithm on the synap-

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

tic efficacy can be visualized by comparing the synap-

tic weights before and after the application of the

learning process, cf. Figure 2D. For the diagram, the

neural inputs are chronologically sorted according to

their spike firing times. A bar in the figure reflects

the synaptic strength of a synapse that corresponds

to a particular input. In order to get an impres-

sion of the temporal causality of the weight changes,

we overlay the plot with the desired firing times of

the neuron (red vertical lines at 33, 66, 99, 132 and

166ms). The figure presents the weight changes av-

eraged over all 100 runs.

Due to the experimental setup (see Table 2), we

observe a uniform distribution of the weights after

the initialization of the algorithm. After the train-

ing over 100 epochs, the synapses that transfer in-

put spikes which are temporally close to the de-

sired target spikes are potentiated. On the other

hand, synapses that transfer spike inputs at unde-

sired times are inhibited. The sine-shaped form

of the chronologically sorted synaptic efficacies is

caused by the equidistant firing times of the spikes

in the target sequence.

From this simple experiment, we conclude that

the proposed learning method is indeed able to train

a desired input-output behavior to a spiking neuron.

In the next sections, we investigate some more chal-

lenging learning scenarios for SPAN.

3.3. Learning with noise

The previous experiment involved the learning of a

single pattern only. In this experiment, we investi-

gate the performance of SPAN when several input

patterns have to be learned. Furthermore, we will

investigate the learning performed with noisy input.

Our experimental setup was inspired by the study

presented in 38. We construct an initial set of ten

spike patterns each consisting of n = 500 input neu-

rons that are allowed to emit a single spike only.

With every presentation of an input pattern to the

learning neuron, a noise is added to each spike in

form of a jitter drawn from a Gaussian distribution.

The strength of the jitter is controlled by the stan-

dard deviation of the Gaussian. In our experiments,

we use different jitter strengths in order to investi-

gate the impact of different noise levels on the learn-

ing performance of SPAN.

The neuron is trained in 400 epochs to emit a sin-

gle spike at td = 99 ms in response to the input pat-

terns. We call the output of the neuron successful,

if the output sequence consists of a single spike only

that occurs within the interval [td − 5ms, td + 5ms].

We define Ps as the probability of a successful out-

put. It is the ratio of the number of output spikes

that match their desired spikes over all ten input pat-

terns. We consider jitter strengths of 0, 5, 10, 15 and

20ms. For each of them, an individual experiment is

undertaken and repeated for 100 trials to guarantee

statistical evidence.

Figure 3 presents the results of the experiment

averaged over the 100 trials. The top row of diagrams

show the obtained results for the noise-free case, i.e.

a jitter strength of zero. On the left, the evolution

of the error is presented. In the first few iterations

of training, the neuron spikes arbitrary and the out-

put does not match the desired target. We note that

Ps (depicted in the right top diagram) is low in the

first few epochs of the training process. However, the

output stabilizes quickly and Ps increases rapidly in-

dicating the neuron’s ability to converge its output

to the desired target spike.

In order to give an impression of the temporal dif-

ference between the obtained output spike and the

target spike, we have computed the absolute differ-

ence ∆t = |td − ta| for all successful output spikes.

The evolution of ∆t is overlaid in the right top dia-

gram. Clearly, the temporal difference is minimized

quickly by SPAN’s learning algorithm resulting in

very precisely timed output spikes.

If noise is introduced to the presented input pat-

terns, the difficulty of the learning task increases sig-

nificantly. The diagrams in the middle row of Fig-

ure 3 present the results for a jitter strength of 5ms.

As expected, the training error can not become zero

in this learning scenario. However, the evolution of

the error indicates a certain convergence of the algo-

rithm. Despite the noise, the training is very often

successful. More than 90% of the output spikes fulfil

the defined success criterion. The neuron is able to

learn to fire within an average time shift ∆t = 2ms

irrespective of the noise.

The performance of SPAN as a function of the

jitter strength is depicted in the bottom plots of

Figure 3. For the diagrams we have used the

neural outputs obtained during the last training

epoch. Clearly, the error is proportional to the jit-

ter strength. This relationship indicates a satisfying

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

100 200 300 400

Epoch

0

2

4

6

8

10

E
rr

o
r

E

100 200 300 400

Epoch

0

1

2

3

4

5

t
(m

s
)

t

Ps

0.0

0.2

0.4

0.6

0.8

1.0

P
s

100 200 300 400

Epoch

0

2

4

6

8

10

E
rr

o
r

E

100 200 300 400

Epoch

0

1

2

3

4

5

t
(m

s
)

0.0

0.2

0.4

0.6

0.8

1.0

P
s

0 5 10 15 20

Jit ter (m s)

0

5

10

15

20

E
rr

o
r

E

0 5 10 15 20

Jit ter (m s)

0

1

2

3

4

5
t

(m
s
)

0.0

0.2

0.4

0.6

0.8

1.0

P
s

(A)

(B)

(C)

Figure 3: Learning multiple spike patterns using the SPAN learning rule. (A) The results when the patterns
are learned without any noise applied. (B) The learning when jittered input patterns are used (jitter strength
of 5ms). A neuron is trained to fire a single spike at 99 ms. The success probability Ps is computed in every
epoch to indicate the number of times the output spikes matches the desired spike. (C) The final training error
in dependence of the applied jitter strength.

resistance of the SPAN rule to input pattern noise.

Even for large jitter strengths, the method is able

to map around three out of ten pattern correctly, cf.

right bottom diagram of the figure.

3.4. The memory capacity

An important issue related in the learning process

is how much information the neuron can learn and

memorize. We use the measure proposed in 36 to

evaluate the memory capacity of SPAN. The mem-

ory capacity is described in term of the load factor α

which is defined as the ratio of the number of input

patterns p the neuron can classify correctly over the

number of synapses n, i.e. α = p
n .

The p input patterns are generated randomly,

similar to the previous experiments, where each pat-

tern consists of n spike trains, each has a single spike

at a random time instant. Subsequently, the patterns

are assigned randomly to c different classes, which is

set to 5 in this experiment.

The task of the experiment is to train the neuron

to classify all patterns correctly in a maximum num-

ber of 500 epochs. The classification is performed by

training the neuron to fire a single spike at a speci-

fied time instant tid when a pattern that belongs to

class i is presented at the input. Thus, the class of

the input pattern is identified by the time of the fired

spike, tid, which is set to 33, 66, 99, 132, or 165 ms

to identify the five classes.

The experiment is repeated on three network ar-

chitectures with 200, 400 and 600 synapses. We re-

port the success rate as a function of the number of

the input patterns p. The success rate is the per-

centage of trials having all input patterns classified

successfully. We also report the average number of

iterations required to achieve a successful classifica-

tion.

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
e
ss
 r
a
te 200 synapses

0

100

200

300

400

500

E
p
o
ch

s

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
e
ss
 r
a
te 400 synapses

0

100

200

300

400

500

E
p
o
ch

s

5 10 15 20 25 30 35 40 45 50 55 60
No. of training patterns

0.0

0.2

0.4

0.6

0.8

1.0

S
u
cc
e
ss
 r
a
te 600 synapses

0

100

200

300

400

500

E
p
o
ch

s

Figure 4: The memory capacity of SPAN with different number of synapses. The plot in red represents the rate
of the successful runs where the input patterns are identified correctly. The plot in blue represents the average
number of epochs for the successful runs. The green diamond marker represents the maximum number of learned
patterns for which the average number of successful trainings is above 90%.

A pattern is decided as correctly classified, if the

fired spike in response to that pattern is within 2

ms of the corresponding target spike. The learning

rate is set to λ = c
p and the synaptic weights are ini-

tialized randomly using maximum weight values of

5, 2.5 and 2 pA for the 200, 400 and 600 synapses

respectively.

Figure 4 shows the results of the experiment for

the three cases of the synapses. From the figure,

it is clear that increasing the number of synapses

increases the number of patterns that can be re-

membered and classified correctly. However, more

epochs and more computation time is required to

adjust the synaptic weights. It is noted that after

a certain number of input patterns, it becomes diffi-

cult for the neuron to recognize the patterns and the

success rates drops. We consider the points where

the success rate is 90% and above indicated by the

green diamond markers in Figure 4. For these points,

the value of p is 15, 30, 35 with success rate of

96%, 94%, 90% respectively. Furthermore, the aver-

age number of epochs is below 100 to achieve suc-

cessful training. In addition, the load factors at these

points are 0.075, 0.075 and 0.058 for the three cases

of 200, 400 and 600 synapses respectively.

3.5. Classification problem

In this experiment a spatio-temporal classification

task is performed. The objective is to learn to clas-

sify five classes of input spike patterns. The pattern

for each class is given as a random input spike pat-

tern that was created in a similar fashion as for the

previous experiments. Fifteen copies for each of the

five pattern are then generated by perturbing each

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

0 50 100 150 200
Epoch

101

102

103

104

A
v
e
ra

g
e
 E

rr
o
r

Evolution of Average Error

Class 1
Class 2
Class 3
Class 4
Class 5

(a)

1 2 3 4 5
Class

0

20

40

60

80

100

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy
 i
n
 \

%

81

100 100 100

93

47

92
87

78

94

Training
Testing

(b)

Figure 5: Evolution of the average errors obtained in 30 independent trails for each class of the training samples
(a). The average accuracies obtained in the training and testing phase (b).

pattern using a Gaussian jitter with a standard de-

viation of 3ms resulting in a total of 15 × 5 = 75

samples in the training data set. Additionally, we

create 25 × 5 = 125 testing samples using the same

procedure. The output neuron is then trained to

emit a single spike at a specific time for each class.

Only the training set is used during training, while

the testing set is used to determine the generaliza-

tion ability of the trained neuron. The spike time of

the output neuron encodes the class label of the pre-

sented input pattern. The neuron is trained to spike

at the time instances 33, 66, 99, 132, and 165ms re-

spectively, each spike time corresponding to one of

the five class labels. We allow 200 epochs for the

learning method and we repeat the experiment in 30

independent runs. For each run we chose a different

set of random initial weights.

Figure 5a shows the evolution of the average error

for each of the five classes. In the first few epochs,

the value of the error oscillates and then starts to

stabilize and decrease slowly. The learning error de-

creases for some classes faster than for others, e.g.

class 3. We also note that the class reporting the

highest error is class 1. This behavior is expected

and confirms a quite similar finding in 38. In order

to classify samples of class 1 correctly, the output

neuron has to emit a very early spike at t ≈ 33ms.

Consequently, the neuron needs to be stimulated by

input spikes occurring at times before t = 33ms.

However, due to the random generation of the input

data, only few input spikes occur before t = 33ms.

Most input spikes arrive after that time at the out-

put neuron and therefore do not contribute to the

correct classification of class 1 samples. The rela-

tionship between the accuracy and the output spike

time was also noted in 38. Future studies will further

investigate this interesting observation.

In order to report the classification accuracy of

the trained neuron, we define a simple error metric.

We consider a pattern as correctly classified, if the

neuron fires a single spike within [tfd −3ms, tfd +3ms]

of the desired spike time t
f
d . Any other output is

considered as incorrect. It is noteworthy to men-

tion that using this definition, an untrained neuron

is very likely to produce incorrect outputs resulting

in accuracies close to zero. Figure 5b shows the aver-

age classification error for each class in the training

and testing phase. As mentioned above, for testing,

the 125 unseen patterns of the test set are used. The

neuron is able to learn to classify the 75 training

patterns with an average accuracy of 94.8% across

all classes. Once more, we note the comparatively

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

poor classification performance of samples belonging

to the first class. For the test patterns, the neuron is

able to achieve average accuracy of 79.6% across all

classes.

4. Discussion

The experimental analysis presented in the previous

section has demonstrated that, despite its algorith-

mic simplicity, the SPAN learning method can effi-

ciently impose a desired input/output behavior to a

SNN. In this section, we compare the differences and

the similarities between the proposed method and

two related algorithms, the Chronotron 38 and the

ReSuMe learning rule 43,37.

Similar to SPAN, the ReSuMe learning algorithm

is derived from the Widrow-Hoff rule. ReSuMe in-

terprets the Widrow-Hoff rule as a combination of

an STDP and an anti-STDP process within an ex-

plicit learning window. the method emphasizes on

the implementation of biologically plausible learning

processes. The SPAN rule, on the other hand, fol-

lows a different idea. By converting spike trains into

analog signals, the Widrow-Hoff rule can be directly

applied to spiking neurons using an interpretation of

the classical Hebbian learning rule, as it is in the clas-

sical ANN, rather than a STDP rule. . Despite the

fact that the kernelization of spike trains was inves-

tigated in several studies before, we are not aware of

any study that applies spike convolution in an algo-

rithm for the learning of precisely timed spike train

patterns. In 33,37 kernel functions have been used to

define spike train metrics and in 54 kernelized spike

trains were studied in the context of classification

problems using a nearest neighbor approach.

Although the biological plausibility of the SPAN

learning method is at least questionable, a surprising

observation can be made when the α-kernel employed

in this study is replaced by an exponential one. We

define a convolved spike using an exponential kernel

as:

s̃(t− tf) = κ(t− tf)

= H(t− tf)e−(t−tf)/τ (18)

Using this kernel, the integration of Eq. 7 leads to:

∆wSPAN
i = λ

∫

∞

0

∆wi(t)

= λ

∫

∞

0

x̃i(t) (ỹd(t)− ỹa(t)) dt

=
τλ

2

∑

g

∑

f

e−
|t

g
d
−t

f
i
|

τ

−
∑

h

∑

f

e−
|tha−t

f
i
|

τ

 (19)

This form of the SPAN learning rule has a surpris-

ing similarity to the ReSuMe rule. A batch learning

version of ReSuMe was given in 38 and is defined as:

∆wReSuMe
i = λ

∑

g

aR +
∑

tf
i
<tg

d

e−
t
g
d
−t

f
i

τ

−

∑

h

aR +
∑

tf
i
<tha

e−
tha − t

f
i

τ

(20)

where aR is a non-Hebbian term that was shown

to be important to speed up the convergence of the

training process 55.

Both rules differ in the way the spikes are ac-

cumulated. In SPAN the inner sum loops over all

input spikes tfi in Eq. 19. While ReSuMe only accu-

mulates spikes that occur before an input spike t
f
i ,

SPAN’s learning rule does not include this discrim-

ination. Furthermore, SPAN allows using different

kernel functions. We have noticed that the α kernel

function achieves better results than the exponential

kernel function. However, it will be interesting to

investigate the impact of the kernel functions on the

performance of SPAN in more details in future study.

Our preliminary comparison shows that SPAN with

α kernel function has much better memory capacity

than ReSuMe as reported in section . Similar obser-

vation was reported in 38 when comparing ReSuMe

and Chronotron.

In principle, the SPAN rule is also similar to the

Chronotron E-learning rule 38. Also in Chronotron

the synaptic weights are modified according to a gra-

dient descent in an error landscape. Its error function

is based on the Victor&Purpura (VP) distance 39.

By finding a way to deal with the discontinuities of

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

the VP metric, the Chronotron rule efficiently com-

putes the error gradient and updates the weights

accordingly. SPAN’s error landscape, on the other

hand, is based on a metric similar to the van Rossum

metric 49 but with α kernels. This metric does not

exhibit any discontinuities allowing the definition of

a simple yet powerful learning rule. A future study

should investigate the differences and similarities of

Chronotron and SPAN in detail.

5. Conclusion and future directions

In this paper we have proposed SPAN, a spiking neu-

ron that uses a new learning rule to learn spike pat-

tern association and sequence generation. SPAN’s

learning is based on a simple concept; converting

spike trains onto analog signals and using the exist-

ing Widrow-Hoff rule directly for training. Convert-

ing spike onto analog signals using a kernel function

has been used before to compare and interprate spike

patterns but not directly for learning. It is noted

that the conversion is performed externally and dur-

ing the training to compute an error signal, thus it

does not depend on the neural model and other mod-

els could be also used. The algorithm was tested on

different temporal tasks including spike pattern clas-

sification that resembles to some extent a real world

problem. In this task SPAN was trained on jittered

spike patterns and tested on unseen data to achieve

accuracy of about 80%. As was elaborated in the

discussion section, SPAN learning has connections

to other learning algorithms including ReSuMe and

Chonotron although it less emphasises on the biolog-

ical aspect.

As a future direction, the learning algorithm will

be applied on real world temporal computation tasks.

Possible usage of SPAN is a readout function for the

Liquid Sate Machine. Also, the feasibility of con-

structing and learning multi SPANs to increase the

computation capacity is needed to be studied. The

feasibility of online learning will be investigated.

As a first step in this direction, an incremental

learning algorithm will be further investigated 56.

The effect of dynamic synapses and probability pa-

rameters associated with the LIF neuron 57 will

be studied too. An interesting issue is to combine

temporal spike learning with a method for synaptic

weight initialisation using integrated rank-order and

rate order coding 58,59. In terms of applications, we

plan to investigate the feasibility of using SPAN for

a smooth control of neuro-prosthetics and rehabili-

tation robots 47,60. This will require to implement

SPAN on a SNN hardware, such as 61. Initial anal-

ysis suggests that SPAN is a suitable algorithm to

implement in neuromorphic computation systems 62.

Acknowledgements

This project is supported by the Knowledge Engi-

neering and Discovery research Institute (KEDRI,

http://www.kedri.info) of the Auckland Univer-

sity of Technology. In addition, AM is sup-

ported by a grant from the NZ Ministry of Sci-

ence and Innovation and NK by an EU FP7

Marie Curie project EvoSpike, hosted by the In-

stitute for Neuroinformatics at ETH/UZH Zurich

(http://ncs.ethz.ch/projects/evospike).

References

1. W. Gerstner and W. M. Kistler: Spiking Neu-
ron Models: Single Neurons, Populations, Plasticity.
Cambridge University Press, Cambridge, MA (2002).

2. W. Maass: Networks of spiking neurons: The third
generation of neural network models. Neural Net-
works, 10(9) (1997) 1659 – 1671.

3. W. Maass and C. M. Bishop (eds.): Pulsed Neural
Networks. MIT Press, Cambridge, MA, USA (1999).

4. W. Maass: Computing with spiking neurons. In
Pulsed neural networks, 55–85. MIT Press, Cam-
bridge, MA, USA (1999).

5. S. Ghosh-Dastidar and H. Adeli: Spiking neural net-
works. Int. J. Neural Syst., 19(4) (2009) 295–308.

6. W. Maass and A. M. Zador: Dynamic stochastic
synapses as computational units. Neural Computa-
tion, 11(4) (1999) 903–917.

7. M. Tsodyks, K. Pawelzik and H. Markram: Neural
networks with dynamic synapses. Neural Comput.,
10(4) (1998) 821–835.

8. S. M. Bohte: The evidence for neural information
processing with precise spike-times: A survey. Natu-
ral Computing, 3 (2004) 2004.

9. R. VanRullen, R. Guyonneau and S. J. Thorpe: Spike
times make sense. Trends in Neurosciences, 28(1)
(2005) 1 – 4.

10. P. Tiesinga, J. Fellous and T. J. Sejnowski: Regula-
tion of spike timing in visual cortical circuits. Nat
Rev Neurosci, 9(2) (2008) 97–107.

11. D. A. Butts, C. Weng, J. Jin, C. Yeh, N. A. Lesica,
J. Alonso and G. B. Stanley: Temporal precision in
the neural code and the timescales of natural vision.
Nature, 449(7158) (2007) 92–95.

12. B. Szatmry and E. M. Izhikevich: Spike-timing the-

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

ory of working memory. PLoS Comput Biol, 6(8)
(2010) 1–11.

13. J. Hopfield: Pattern recognition computation using
action potential timing for stimulus representation.
Nature, 376 (1995) 33–36.

14. S. M. Bohte, J. N. Kok and J. A. L. Poutré: Error-
backpropagation in temporally encoded networks of
spiking neurons. Neurocomputing, 48(1-4) (2002) 17–
37.

15. A. K. Vidybida: Testing of information condensation
in a model reverberating spiking neural network. Int.
J. Neural Syst., 21(3) (2011) 187–198.

16. N. Kasabov, R. Schliebs and H. Kojima: Probabilis-
tic computational neurogenetic modelling: From cog-
nitive systems to alzheimers disease. Autonomous
Mental Development, IEEE Transactions on.

17. A. Jahangiri and D. M. Durand: Phase resetting
analysis of high potassium epileptiform activity in
ca3 region of the rat hippocampus. Int. J. Neural
Syst., 21(2) (2011) 127–138.

18. N. R. Luque, J. A. Garrido, R. R. Carrillo, S. Tolu
and E. Ros: Adaptive cerebellar spiking model em-
bedded in the control loop: Context switching and
robustness against noise. Int. J. Neural Syst., 21(5)
(2011) 385–401.

19. U. R. Acharya, E. C. Chua, K. C. Chua, L. C. Min
and T. Tamura: Analysis and automatic identifica-
tion of sleep stages using higher order spectra. In-
ternational Journal of Neural Systems, 20(6) (2010)
509–521.

20. J. Iglesias and A. E. P. Villa: Emergence of preferred
firing sequences in large spiking neural networks dur-
ing simulated neuronal development. Int. J. Neural
Syst., 18(4) (2008) 267–277.

21. M. OH́alloran, B. McGinley, R. C. Conceicao,
F. Morgan, E. Jones and M. Glavin: Spiking neu-
ral networks for breast cancer classification in a di-
electrically heterogeneous breas. Progress In Electro-
magnetics Research C, 113 (2011) 413–428.

22. T. J. Strain, L. J. McDaid, T. M. McGinnity, L. P.
Maguire and H. M. Sayers: An stdp training algo-
rithm for a spiking neural network with dynamic
threshold neurons. International Journal of Neural
Systems, 20(6) (2010) 463–480.

23. S. G. Wysoski, L. Benuskova and N. Kasabov: Evolv-
ing spiking neural networks for audiovisual informa-
tion processing. Neural Networks, 23 (2010) 819–835.

24. S. Ghosh-Dastidar and H. Adeli: A new supervised
learning algorithm for multiple spiking neural net-
works with application in epilepsy and seizure detec-
tion. Neural Networks, 22(10) (2009) 1419 – 1431.

25. J. Peandrez-Carrasco,
C. Serrano, B. Acha, T. Serrano-Gotarredona and
B. Linares-Barranco: Spike-based convolutional net-
work for real-time processing. In Proceedings of
the 2010 20th International Conference on Pattern
Recognition, ICPR ’10, 3085–3088. IEEE Computer

Society, Washington, DC, USA (2010).
26. S. Soltic and N. K. Kasabov: Knowledge extraction

from evolving spiking neural networks with rank or-
der population coding. Int. J. Neural Syst., 20(6)
(2010) 437–445.

27. S. P. Johnston, G. Prasad, L. Maguire and T. M.
McGinnity: An fpga hardware/software co-design to-
wards evolvable spiking neural networks for robotics
application. International Journal of Neural Sys-
tems, 20(6) (2010) 447–461.

28. E. Nichols, L. J. McDaid and N. H. Siddique: Case
study on a self-organizing spiking neural network for
robot navigation. International Journal of Neural
Systems, 20(6) (2010) 501–508. PMID: 21117272.

29. I. Uysal, H. Sathyendra and J. Harris: Towards spike-
based speech processing: A biologically plausible ap-
proach to simple acoustic classification. Int. J. Appl.
Math. Comput. Sci., 18 (2008) 129–137.

30. S. Deneve: Bayesian spiking neurons i: Inference.
Neural Computation, 20(1) (2008) 91–117.

31. S. Ghosh-Dastidar and H. Adeli: Improved spiking
neural networks for eeg classification and epilepsy
and seizure detection. Integr. Comput.-Aided Eng.,
14 (2007) 187–212.

32. L. Bako: Real-time classification of datasets with
hardware embedded neuromorphic neural networks.
Briefings in Bioinformatics, 11(3) (2010) 348 –363.

33. W. Maass, T. Natschläger and H. Markram: Real-
time computing without stable states: A new frame-
work for neural computation based on perturbations.
Neural Computation, 14(11) (2002) 2531–2560.

34. S. J. Thorpe, R. Guyonneau, N. Guilbaud, J.-M. Al-
legraud and R. VanRullen: SpikeNet: real-time visual
processing with one spike per neuron. Neurocomput-
ing, 58-60 (2004) 857 – 864.

35. S. M. Bohte, J. N. Kok and J. A. L. Poutré: Spike-
Prop: backpropagation for networks of spiking neu-
rons. In ESANN, 419–424 (2000).

36. R. Gutig and H. Sompolinsky: The tempotron: a neu-
ron that learns spike timing-based decisions. Nat
Neurosci, 9(3) (2006) 420–428.

37. F. Ponulak and A. Kasiński: Supervised learning
in spiking neural networks with ReSuMe: sequence
learning, classification, and spike shifting. Neu-
ral Computation, 22(2) (2010) 467–510. PMID:
19842989.

38. R. V. Florian: The chronotron: a neuron that
learns to fire temporally-precise spike patterns.
http://precedings.nature.com/documents/5190/version/1
(2010).

39. J. D. Victor and K. P. Purpura: Metric-space anal-
ysis of spike trains: theory, algorithms and applica-
tion. Network: Computation in Neural Systems, 8(2)
(1997) 127–164.

40. D. E. Rumelhart, G. E. Hinton and R. J. Williams:
Learning representations by back-propagating errors.
Nature, 323 (1986) 533–536.

SPAN: Spike Pattern Association Neuron for Learning Spatio-Temporal Spike Patterns

41. J. Xin and M. Embrechts: Supervised learning with
spiking neural networks. In International Joint Con-
ference on Neural Networks, IJCNN ’01, vol. 3,
1772–1777. IEEE Press (2001).

42. B. Schrauwen and J. van Campenhout: Im-
proving SpikeProp: Enhancements to an error-
backpropagation rule for spiking neural networks. In
Proceedings of the 15th ProRISC Workshop (2004).

43. F. Ponulak: ReSuMe – new supervised learning
method for spiking neural networks. Tech. rep., Insti-
tute of Control and Information Engineering, Poznań
University of Technology, Poznań, Poland (2005).

44. R. Legenstein, C. Naeger and W. Maass: What can a
neuron learn with spike-timing-dependent plasticity?
Neural Computation, 17(11) (2005) 2337–2382.

45. C. Bell, V. Z. Han, Y. Sugawara and K. Grant:
Synaptic plasticity in a cerebellum-like structure de-
pends on temporal order. Nature, 387 (1997) 278–
281.

46. B. Widrow and M. Lehr: 30 years of adaptive neu-
ral networks: perceptron, madaline, and backpropa-
gation. Proceedings of the IEEE, 78(9) (1990) 1415
–1442.

47. F. Ponulak and A. J. Kasinski: ReSuMe learning
method for spiking neural networks dedicated to neu-
roprostheses control. In ESANN 2006, 14th Euro-
pean Symposium on Artificial Neural Networks, 623–
629 (2006).

48. R. V. Florian: Reinforcement learning through mod-
ulation of spike-timing-dependent synaptic plastic-
ity. Neural Computation, 19(6) (2007) 1468–1502.

49. M. C. van Rossum: A novel spike distance. Neural
Computation, 13(4) (2001) 751–763.

50. A. Mohemmed, S. Schliebs, S. Matsuda, K. Dhoble
and N. Kasabov: Optimization of spiking neural net-
works with dynamic synapses for spike sequence gen-
eration using PSO. In International Joint Conference
on Neural Networks, IJCNN 2011, 2969–2974. San
Jose, California, USA (2011).

51. A. Mohemmed, S. Schliebs, S. Matsuda and
N. Kasabov: Method for training a spiking neu-
ron to associate input-output spike trains. In
EANN/AIAI 2011, Part I, IFIP AICT, vol. 363,

219–228. Springer, Corfu, Greece (2011).
52. E. Nordlie, M.-O. Gewaltig and H. E. Plesser: To-

wards reproducible descriptions of neuronal network
models. PLoS Comput Biol, 5(8) (2009) e1000 456.

53. M.-O. Gewaltig and M. Diesmann: Nest (neural sim-
ulation tool). Scholarpedia, 2(4) (2007) 1430.

54. B. Schrauwen and J. V. Campenhout: Linking non-
binned spike train kernels to several existing spike
train metrics. Neurocomput., 70 (2007) 1247–1253.

55. F. Ponulak: Analysis of the resume learning process
for spiking neural networks. Applied Mathematics
and Computer Science, 18(2) (2008) 117–127.

56. A. Mohemmed and N.Kasabov: Incremental learning
algorithm for spike pattern classification. In WCCI
2012 IEEE World Congress on Computational Intel-
ligence, 1227–1232. Brisbane, Australia (2012).

57. N. Kasabov: To spike or not to spike: A probabilis-
tic spiking neuron model. Neural Networks, 23(1)
(2010) 16–19.

58. N. Kasabov: Evolving spiking neural networks
and neurogenetic systems for spatio- and spectro-
temporal data modelling and pattern recognition. In
J. L. et al. (ed.), IEEE WCCI 2012, LNCS 7311,
234–260. Springer-Verlag, Berlin Heidelberg (2012).

59. K. Dhoble, N. Nuntalid, G. Indivery and N. Kasabov:
On-line spatiotemporal pattern recognition with
evolving spiking neural networks utilising address
event representation, rank oder- and temporal spike
learning. In WCCI 2012 IEEE World Congress on
Computational Intelligence, 554–560. Brisbane, Aus-
tralia (2012).

60. X. Wang, Z.-G. Hou, A. Zou, M. Tan and L. Cheng:
A behavior controller based on spiking neural net-
works for mobile robots. Neurocomputing, 71(4-6)
(2008) 655 – 666.

61. S. Moradi and G. Indiveri: A vlsi network of spiking
neurons with an asynchronous static random access
memory. In Biomedical Circuits and Systems Con-
ference (BioCAS), 2011 IEEE, 277–280 (2011).

62. G. Indiveri and T. K. Horiuchi: Frontiers in neu-
romorphic engineering. Frontiers in Neuroscience,
5(118).

