Accepted Manuscript

Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes

Nikola Kasabov, Elisa Capecci

PII: S0020-0255(14)00656-2
DOI: http://dx.doi.org/10.1016/j.ins.2014.06.028
Reference: INS 10954

To appear in: Information Sciences

Received Date: 5 January 2014
Revised Date: 21 April 2014
Accepted Date: 25 June 2014

Please cite this article as: N. Kasabov, E. Capecci, Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes, Information Sciences (2014), doi: http://dx.doi.org/10.1016/j.ins.2014.06.028

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Spiking neural network methodology for modelling, classification and understanding of EEG spatio-temporal data measuring cognitive processes

Nikola Kasabov* and Elisa Capecci

Knowledge Engineering and Discovery Research Institute (KEDRI), Auckland University of Technology, AUT Tower, Level 7, 2-14 Wakefield Street, Auckland, 1010, New Zealand

Email addresses: nkasabov@aut.ac.nz (Nikola Kasabov), ecapecci@aut.ac.nz (Elisa Capecci)

Abstract

The paper offers a new methodology for modelling, recognition and understanding of electroencephalography (EEG) spatio-temporal data measuring complex cognitive brain processes during mental tasks. The key element is that mental tasks are performed through complex spatio-temporal brain processes and they can be better understood only if we model properly the spatio-/spectro temporal data that measures these processes. The proposed methodology is based on a recently proposed novel spiking neural network architecture, called NeuCube as a general framework for spatio-temporal brain data modelling. The methodology is demonstrated on benchmark cognitive EEG data. The new approach leads to a faster data processing, improved accuracy of the EEG data classification and improved understanding of this data and the cognitive processes that generated it. The paper concluded that the new methodology is worth exploring further on other spatio-temporal data, measuring complex cognitive brain processes, aiming at using this method for the development of the next generation of brain–computer interfaces-, of systems for early diagnosis of degenerative brain disease, such as Alzheimer’s disease (AD), and for personalised neuro-rehabilitation systems.

Keywords: Spiking Neural Networks, NeuCube, EEG, Cognitive Data, Mental Tests, Brain-Computer Interfaces, Alzheimer’s Disease, Personalised Neurorehabilitation.

1. Introduction

Modelling brain data, for the purpose of recognising and understanding of complex brain processes is a major problem in information sciences related to important applications, such as:

- Brain-computer interfaces (BCI) [1, 43, 52];
- Early diagnosis and prevention of degenerative brain diseases, such as Alzheimer’s Disease (AD) [48, 56];
- Personalised disease prognosis and neuro-rehabilitation [6,37]

Cognitive brain processes are characterised by complex spatio-/spectro-temporal brain data (STBD) that is difficult to process and understand in a computer model, unless we have a proper computational model that is relevant to the data. Many brain data related applications from the above listed still use inappropriate techniques and require more efficient ones as discussed below.

BCIs aim at decoding brain signals that represent cognitive processes to enable human-computer communication [1-4, 25, 29, 43, 52]. BCIs still use traditional statistical and artificial intelligence (AI) methods for the recognition of complex STBD. This often limits the functioning of the BCIs and leads to poor performance [40,52].

The increase in longevity of people’s lives in modern society brought also the urgency to face the problem of dealing with the dramatic rise of neurological disorders and above all AD even in early onset [29, 38, 48, 56]. This is becoming a major public health problem that raises serious health questions and would require reorganization of social care services. Cognitive tests and memory screening are commonly used to stage and diagnose cognitive impairment, such as AD [55]. In fact, one of the first symptoms that follow the onset of the pathology is cognitive decline and memory loss. Early detection is important, as it allows for initial treatments. In this field, neuroinformatics research can play a pivotal role. A main contribution that can be brought by information scientists is a much more efficient machine learning technique.

Personalised medicine is a current trend in health care with a huge potential in many health related areas, including BCI and neuro-rehabilitation robotics [6, 68]. Still new information science methods are needed for the efficient implementation of this concept as it has already been demonstrated in [37].

Electroencephalogram (EEG) data is the most commonly collected for the study of brain processes [1, 9, 10, 13, 25, 29, 53] related to both BCI and brain diseases. However, this data is the product of complex spatio-temporal brain signal pathways that are time dependant events related to the brain structure and its functioning [29, 62, 65, 66]. In principle, EEG data is spatio-/spectro temporal brain data (STBD) and it has to be processed as such in order to be properly understood. This has been done with only partial success so far which raises the need for the development of new information science methods as pointed in [19, 29, 34].

In this paper we propose a novel methodology for the classification of EEG STBD recorded during different cognitive activities (section 2). The methodology is based on the brain inspired spiking neural networks (SNN) and more specifically – on a recently proposed SNN architecture NeuCube [32, 34]. In section 3 we demonstrate the methodology on a benchmark data recorded during cognitive tasks [9]. Section 4 compares the proposed method and the obtained results on the benchmark data with traditional approaches, with the conclusion that the new method not only results in a significantly better accuracy of classification, but also in a better interpretation of the model and a better understanding of the data and the cognitive processes that generated it. Accurate classification results can be interpreted as an indicator for the detection of memory related cognitive problems. Section 5 highlights future directions for research based on the proposed methodology.
2. A spiking neural network methodology for modelling of EEG spatio-temporal data of brain cognitive activities

2.1. Brain-like SNN for modelling spatio-temporal data

There is a vast amount of information about structural and functional characteristics of the human brain accumulated so far, including: synaptic processes [29]; information encoding [63]; connectivity [27]; structural and functional atlases [42, 45, 46, 65]; cortical projections [41]; genetics and proteomics [5, 21]; neuro-genetic atlases [20, 28]; brain disorders and conditions [55]. All this can be valuable information when processing cognitive data if our computational models can represent it.

From information science point of view, the brain represents and processes information at a ‘low level’ in the form of many trains of temporal electrical potentials that can be considered binary events (spikes) and are transferred between neurons through synaptic connections. Through learning from data the synaptic connections are modified to reflect more precisely the timing of the data from the sensory inputs. And this is one of the principles of SNN, considered the third generation of brain-inspired neural network techniques [16-19]. SNN methods have been developed for: learning from data [17, 22, 26, 44, 60, 64]; system design and implementation [17, 19, 57]; encoding continuous input data into spike trains, such as the silicon retina [8] and the silicon cochlea sensory devices; neurogenetic computation [5, 31, 35, 38]; high performance and neuromorphic engineering systems [14, 15, 24, 51]. Promising features of SNN are: compact representation of space and time; fast information processing; time-based and frequency-based information representation. Methods of SNN for spatio-temporal pattern recognition have been already developed [11, 23, 26, 33], including: evolving SNN (eSNN) classifiers [30, 36, 47, 57, 69]; pilot applications for moving object recognition [36, 57]; pilot applications for simple EEG data classification [6, 53]; SNN reservoir computing and liquid state machines [57, 59, 67]; finite automata modelling [50, 51].

SNN methods and techniques provide a solid background for the development of new, brain-like information methods and systems for STBD. One of them, called NeuCube, is described below and used in the next sections for the proposed in this paper methodology for cognitive EEG data modelling, classification and understanding.

2.2. The NeuCube SNN architecture for modelling STBD

NeuCube is a SNN architecture for STBD, initially proposed in [32] and then further developed in [34, 59, 6, 37]. A block diagram of the NeuCube model is depicted in Fig.1. The NeuCube architecture consists of the following modules: input information encoding module; 3D SNN reservoir module (SNNr); output (classification) module; gene regulatory network (GRN) module (optional); optimisation module (optional).

The input module transforms input data into trains of spikes that are entered then into the main module – the 3D SNNr. The SNNr is structured to spatially map brain areas for which STBD is available. That may include known structural or/and functional connections between different areas of the brain represented in the data. Setting up a proper initial structural connectivity in a model, in our case the SNNr, is important in order to learn properly spatio-temporal data and capture functional connectivity. More specific structural connectivity data can be obtained using for example diffusion tensor imaging (DTI) method.
The initial structure of the SNNr can be preliminary defined based on the available brain data and the problem or/and generated as a small-world connectivity [34]. The structure is also evolving through the creation of new neurons and new connections based on the ECOS principles used in eSNN classifiers [30, 36, 47, 53]. If new data do not sufficiently activate existing neurons in the output classifier, new neurons are created and allocated to match the data along with their new connections.

![Fig.1. A block diagram of the NeuCube architecture (from [34])](image)

Learning in the NeuCube is performed in two stages:
- Unsupervised learning, where STBD in the forms of spike trains, is entered into corresponding areas of the SNNr. Unsupervised learning is performed to modify the initially set connection weights. The SNNr will learn to activate same groups of spiking neurons when similar input stimuli are presented, also known as a polychronization effect [26].
- Supervised learning of the spiking neurons in the output classification module, where the same STBD used for the unsupervised training, is now propagated again through the trained SNNr and output neurons are generated (evolved) and trained to classify the spatio-temporal spiking pattern of the SNNr into pre-defined classes (or output spike sequences). As a special case, all neurons from the SNNr are connected to every output neuron. Feedback connections from output neurons to neurons in the SNNr can be created for reinforcement learning. Different SNN methods can be used to learn and classify spiking patterns from the SNNr, including: eSNN [30, 69]; dynamic evolving SNN (deSNN, [36]); spike pattern association neuron (SPAN, [47]); other SNN classifiers [57]. All these options are implemented in some preliminary NeuCube implementations [6, 34, 59]).

Memory in a NeuCube-based model is represented as:
- Short-term memory, represented as changes of the post-synaptic potentials (PSP) and temporary changes of synaptic efficacy;
- Long-term memory, represented as a stable establishment of synaptic efficacy – long-term potentiation (LTP) and long-term depression (LTD);
- Genetic memory, represented as a genetic code.
NeuCube is a new type of computational architecture, which allows the creation of different models for STBD based on the following information processing principles as listed in [34]:

1. The model has a spatial structure that maps approximately the spatially located areas of the brain where STBD is collected;
2. The same information paradigm - spiking information processing that ultimately generates STBD at a low level of brain information processing, is used in the model to represent and to process this STBD;
3. Brain-like learning rules are used in the model to learn STBD, mapped into designated spatial areas of the model;
4. A model is evolving in terms of new STBD patterns being learnt, recognized and added incrementally, which is also a principle of brain cognitive development;
5. A model always retains a spatio-temporal memory that can be mined and interpreted for a better understanding of the cognitive processes.
6. A visualization of the model evolution during learning can be used as a bio-feedback.

All the above principles make NeuCube a suitable SNN architecture to learn and reveal complex spatio-temporal patterns ‘hidden’ in STBD and that is why it has been chosen for the development of the new methodology to model cognitive EEG STBD as outlined in the next sub-section.

2.3. A NeuCube-based methodology for modelling EEG spatio-temporal data of brain cognitive activities

The proposed here methodology for modelling, classification and understanding of EEG cognitive data consists of the following procedures:

1) Collecting EEG STBD representing relevant to the study brain cognitive processes.
2) Encoding the EEG data into spike sequences.
3) Mapping the spike sequences into a specially designed SNNr that reflects on the number of input variables (channels) and the data available.
4) Training the SNNr on the spike STBD using unsupervised learning method, e.g. STDP [60].
5) Training of an output classifier in a supervised mode.
6) Validation of the classification results.
7) Repeating steps (2) to (6) for different parameter values in order to optimize the classification performance. Record the best performing model.
8) Visualize the trained SNNr and analyse its connectivity and spiking activity for a better understanding of the data and the brain processes that generated it.

For mapping the spatial locations of the EEG channels into the SNNr, we use the Talairach template [41, 42, 61]. The neurons in the SNNr are located following the same (x,y,z) coordinates of the Talairach template and the EEG channels are mapped according to the standard mapping suggested in [41]. The spike sequences that represent data from EEG channels (after transformation of continuous value signals into spike trains) are entered into the correspondingly located neurons in the SNNr during the unsupervised training procedure.

The above methodology is applied step-wise on a case study problem of cognitive EEG data modelling in the next section. Figs. 2, 3 and 4 illustrate the procedures above.
3. A Case Study on EEG cognitive data modelling

3.1. Data Description

The data used for this study was recorded in an earlier experiment [9, 39, 40] and further studied in [1, 3, 49]. This data was collected from the cortex of seven healthy subjects (between 20 and 48 years old; six men and one woman; all right-handed except for one subject) following five different scenarios, one resting task and four cognitive tests. A brain computer interface device was used to collect EEG data. The designed mental task scenarios consisted of: a “resting” task - a subject is relaxing, avoiding thoughts as much as possible (class 1); a “letter composition” task (class 2) - a subject is tasked with imagining writing a letter to someone without verbally expressing it; a “multiplication” task (class 3) - a subject is performing a non-simple two digit mental multiplication; a “counting” task (class 4) - a subject is visualising a blackboard on top of which numbers were sequentially being written; a “rotation” task (class 5) - a subject is mentally rotating a 3D geometric figure. Each recording session was carried out using six electrodes: C3, C4, P3, P4, O1, O2. Data was recorded for 10 seconds at 250Hz, resulting in 2500 data points collected per session. Every task was repeated five times during a daily session. Some of the subject data was recorded on a one-day session, while other subjects repeated the five trial tasks for a second or third day session. The data of subject 4 was excluded from the experiment, as according to a previous study [49], the signal was repeatedly saturated or invalidated in several trials.

For our study, we resized each session dataset into two samples of 5 seconds each, 1250 data points per channel on every sample. We assumed that half of the information can be considered enough to represent the mental activity measured. Thus, for each of the 5 classes we had 10 samples of 1250 data points × 6 EEG channels, in total, we obtained 50 samples per subject and per session.

3.2. Model Design and Implementation

We applied the methodology from section 2 on the above experiment as shown graphically on Fig.2. For the model implementation we have used a software simulator of NeuCube written in MATLAB (see [6, 34] for more details).

EEG STBD was classified per subject and per session using a NeuCube-based model that had a reservoir SNNr of 1471 spiking neurons using the Talairach EEG electrode mapping template [41]. One of the advantages of the NeuCube framework is that in many cases there is no need of pre-processing (such as normalization of the data, scaling, smoothing, etc.). The raw data is fed into the model as time series and transformed into spike trains using address event representation method (AER, [8]), and then the transformed spike trains are mapped into the SNNr for unsupervised training. The AER method is suitable for EEG cognitive STBD, as this algorithm identifies just differences in consecutive EEG values.

The input spike sequences are presented to the reservoir SNNr, which was implemented using leaky integrate and fire (LIF) neurons, which is less computationally expensive [17, 24, 59]. The SNNr was trained using the spike timing dependant plasticity (STDP, [60]) learning rule. The STDP learning rule allows the spiking neurons of the SNNr to learn consecutive temporal associations from the EEG data within-, and across EEG channels, and therefore forming new connections in the architecture that can be analysed and interpreted. This makes
the NeuCube architecture useful for learning spatio-temporal patterns from EEG data, forming associative type of memory that can be further explored [34].

Although the SNNr can be evolving in size, for this research we have explored the classification ability of the NeuCube architecture 1471 spiking neurons, each representing the centre coordinates of a one cubic centimetre area from the 3D Talairach Atlas [42, 61].

The 3D architecture of the SNNr is initialised as "small-world" (SW) connected networks. The SW connectivity principle is fundamental for the initialization, the learning processes of this model and for the process of capturing relevant patterns from the data. The encoded into spike sequences data from the six EEG recording device channels (C3, C4, P3, P4, O3 and O4) is entered as time series into spatially allocated neurons following the Talairach coordinates as suggested in [41] (Fig. 3). Figure 3 also shows different areas of the SNNr that spatially represent regions of the brain according to the Talairach’s template: frontal lobe, temporal lobe, parietal lobe, occipital lobe, posterior lobe, sub-lobar region, limbic lobe, anterior lobe, coloured in different colours.

As an output classifier we used the dynamic evolving SNN (deSNN, [36]) algorithm to classify the EEG STBD into the 5 brain cognitive states (classes). This classification method combines the rank-order learning rule [64] and the STDP [60] temporal learning for each output neuron to learn a spatio-temporal pattern using only one pass of data propagation. The classification results were evaluated using both repeated random sub-sampling validation (RRSSV) and leave-one-out cross-validation (LOOCV).

The last picture of the diagram in Fig.2 represents another key advantage that NeuCube offers: the possibility of model interpretation and knowledge extraction for the purpose of a better understanding of the data and the cognitive brain processes. The state of the SNNr after training can be visualised in different ways and analysed. It can be observed that new connections are formed between neurons that can be further interpreted in the context of different cognitive tasks.

It is important to highlight that the NeuCube model is a stochastic model (i.e. initial connection between the neurons of the reservoir are randomly generated) and therefore the model is sensitive to parameter settings. Some of the major parameters that highly influence the model are:
- The AER threshold of the encoding spike trains -a bi-directional threshold, which is applied to the signal’s gradient according to the time. When input EEG data is loaded, it is transformed into spike trains. The spike rates depend on the AER threshold, which can be determined either as a particular value for every input variable or as a global threshold to be applied to all of them.
- Connectivity between neurons of the network. Depending on a SW connectivity parameter, each neuron of the SNNr is initially connected to its neighbouring neurons within this parameter as distance. We have used a value of 0.15.
- The threshold of firing, the refractory time and the potential leak rate of the LIF neurons. When a LIF neuron of the reservoir receives a spike, its PSP increases gradually with every input spike according to the time, until it reaches an established threshold of firing. Then, an output spike is emitted and the membrane potential is reset to an initial state (refractory time). Between spikes, the membrane potential leaks. In our experiments the three parameters are set to 0.5, 6 and 0.02 respectively.
- The STDP rate parameter. According to the STDP learning rule (see [60] for more details), the firing activity of two connected neurons causes their connection weight to increase or
decrease depending on the order of firing, so that the connection weight will reflect on the temporal relationship between the activities of these neurons. The experiment here uses a value 0.01.

- The number of times that the NeuCube is trained in an unsupervised mode. This is set by default as 2, as higher values may cause over training of the SNNr.

- The variables mod and drift of the deSNN classifier. According to [36], every training sample is associated to an output neuron, which is connected to each and every other neuron of the reservoir. The initial connection weights of these output neurons are all set to zero. New connection weights are formed according to the rank-order (RO) learning rule. This are calculated depending on a modulation factor (the variable mod) of the order of the incoming spikes. The new connection weights will then increase or decrease according to the number of spikes that follow the first one (the drift value). We have used for these parameters values of 0.4 and 0.25 correspondingly.

A crucial step in obtaining good results from the NeuCube model is the optimization of these parameter values. Parameter optimisation can be achieved via grid search method, genetic algorithm, or quantum-inspired evolutionary algorithm [7, 54]. In this study we applied a grid search using 50% of the entire time series for training and the other 50% for testing, both randomly selected. We assessed the classification accuracy of 20 model configurations for each subject and for each session using different AER values and used the AER that resulted in the best accuracy (Table 1). The other parameter values were set explained above.

3.3. Experimental Results

In this study, we measured the classification accuracy of the NeuCube-based models (Table 1) and the average time for execution (Table 2). Table 1 summarizes classification results per subject and per session. Results are expressed as a percentage of accurately classified samples per class type and over all classes. The results are obtained using randomly selected 50/50% train/test data.

As the data set was of a small size, it is not appropriate to draw any scientific conclusions about the mental tasks performance by different subjects, and that was not the goal of this paper. We rather conclude that it is feasible to consider the NeuCube-based method for further analysis and further experimental data modelling to become a widely used method for EEG data analysis related to mental tasks and cognitive processes across applications. The results from this experiment still confirmed some expected phenomena:

- Subjects perform differently for different complex mental tasks (classes);
- Data for class 1 (relax) was the best classified across all subjects;
- The accuracy of classification increased with some manual parameter tuning showing that this is not the full potential of the NeuCube-based model and it still needs to be further optimised.
- Even dealing with very complex mental tasks, the classification accuracy was comparatively good (when compared to previously used classification models).

The above was confirmed as the results from the NeuCube based method were compared with the results obtained in previous experiments carried out the same data set [49]. With the proposed NuCube-based method we obtained higher classification accuracy on the data per session, per subject and overall (see Table 3) when compared with other methods such as support vector machines (SVM) and extreme learning machines (ELM) (tested in a leave-one-out cross validation mode). When the SVM and the ELM methods were applied, the EEG data was first pre-processed (smoothed) and then - ‘compressed’ into smaller number of
input vectors, rather than treated as spatio-temporal stream data as it is in the NeuCube-model case.
Figure 2. A graphical representation of the different steps from the proposed methodology applied on the case study problem.
Figure 3. Different views of the SNNr of 1471 neurons and the 6 input neurons for the case study EEG data and problem. Seven particular areas from the SNNr that correspond spatially to brain regions according to the Talairach Atlas are also shown: in green - the frontal lobe; in magenta - the temporal lobe; in cyan - the parietal lobe; in yellow - the occipital lobe; in red - the posterior lobe; in orange - the sub-lobar region; in black - the limbic lobe; in light blue - the anterior lobe.

Table 1. Experimental results with the NeuCube-based model per subject and per session. Results reveal the classification accuracy percent obtained using RRSSV (per class type and as average over all classes) and using LOOCV (as average over all classes).

<table>
<thead>
<tr>
<th>Samples</th>
<th>Parameter Setting</th>
<th>NeuCube classification accuracy using random 50/50 cross validation method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AER threshold</td>
</tr>
<tr>
<td>Subject and Session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Session 1</td>
<td>2.00</td>
</tr>
<tr>
<td></td>
<td>Session 2</td>
<td>1.99</td>
</tr>
<tr>
<td>2</td>
<td>Session 1</td>
<td>1.30</td>
</tr>
<tr>
<td>3</td>
<td>Session 1</td>
<td>4.07</td>
</tr>
<tr>
<td></td>
<td>Session 2</td>
<td>2.94</td>
</tr>
<tr>
<td>5</td>
<td>Session 1</td>
<td>5.23</td>
</tr>
<tr>
<td></td>
<td>Session 2</td>
<td>2.95</td>
</tr>
<tr>
<td></td>
<td>Session 3</td>
<td>5.89</td>
</tr>
<tr>
<td>6</td>
<td>Session 1</td>
<td>6.48</td>
</tr>
<tr>
<td></td>
<td>Session 2</td>
<td>5.57</td>
</tr>
<tr>
<td>7</td>
<td>Session 1</td>
<td>1.70</td>
</tr>
</tbody>
</table>
The reported in Table 2 average CPU time has been measured under the following settings: a software simulator of NeuCube written in MATLAB R2012b®; a 64 bit Windows 7 machine, with processor Intel® core™ i5-2400 CPU 3.10 GHz; 8GB of memory (RAM).

Table 1. CPU time in seconds for the main NeuCube’s algorithms (data encoding, neucube initialization, unsupervised training of the reservoir and supervised training-testing of the classifier) and for the entire experiment.

<table>
<thead>
<tr>
<th>CPU TIME (seconds)</th>
<th>Average</th>
<th>Data Encoding</th>
<th>NeuCube Initialization</th>
<th>Unsupervised Training</th>
<th>Classifier ST and T</th>
<th>Entire Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.023</td>
<td>1.21</td>
<td>4845.81</td>
<td>1007.72</td>
<td>5854.51</td>
</tr>
</tbody>
</table>

Table 3. NeuCube best classification results versus Nan-Ying Liang et all [49] results.

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Session</th>
<th>NeuCube method</th>
<th>Nan-Ying Liang et all [49]</th>
<th>Method used in [49]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Session 2</td>
<td>100%</td>
<td>86.70%</td>
<td>ELM with smoothing</td>
</tr>
<tr>
<td>2</td>
<td>Session 1</td>
<td>84%</td>
<td>78.76%</td>
<td>SVM with smoothing</td>
</tr>
<tr>
<td>3</td>
<td>Session 2</td>
<td>80%</td>
<td>64.60%</td>
<td>SVM with smoothing</td>
</tr>
<tr>
<td>5</td>
<td>Session 1</td>
<td>84%</td>
<td>63.43%</td>
<td>SVM with smoothing</td>
</tr>
<tr>
<td>6</td>
<td>Session 2</td>
<td>84%</td>
<td>69.47%</td>
<td>ELM with smoothing</td>
</tr>
<tr>
<td>7</td>
<td>Session 1</td>
<td>88%</td>
<td>79.77%</td>
<td>SVM with smoothing</td>
</tr>
</tbody>
</table>

In addition to the above, the NeuCube-based model has several other important advantages:
- It requires only one iteration data propagation for learning, while the classical methods of SVM and ELM require hundreds of iterations;
- The NeuCube-based model is adaptable to new data and new classes, while the other models are fixed and difficult to adapt on new data;
- The NeuCube-based model allows for a good interpretation of the data as discussed next.

3.4. Model interpretation for a better understanding of data

NeuCube constitutes a biologically inspired three-dimensional environment of SNN for online learning and recognition of spatio-temporal brain data. It takes into account data features, offering a better understanding of the information and the phenomena of study. This is illustrated in Fig. 4 which was obtained after the SNNr was trained with one of the data sets. From Fig. 4 we can notice that new connections are formed around the input neurons of the SNNr which were allocated so that they spatially map the spatial location of the EEG electrodes. Studying the picture, we could also deduce some additional information, e.g. subjects where using actively their visual cortex (occipital lobes). Effectively, the subjects were performing each scenario with open eyes. We can also observe from the picture a high activity on the parietal lobe (integration of visual and other information) during the cognitive task related to this data.
The NeuCube model can be further trained incrementally on new data, including new classes, due to the capacity of the SNNr to accommodate data in one pass learning and to the evolvability of the output classifier. The latter will generate a new output neuron for every new input pattern learned and will train it in one pass learning mode [30, 34, 36]. This ability of the NeuCube models will allow to trace the development/decline of cognitive processes over time and to extract new information and knowledge about them.

4. Conclusion and Future Directions

The aim of this research has been to develop a methodology and a framework for modelling and interpretation of EEG data that measures brain activities during cognitive tasks. This is important for the creation of new types of BCI and also for early detection of cognitive decline to be used by clinicians in everyday diagnosis. For this purpose, we selected as a benchmark data EEG STBD on complex cognitive tasks [9, 39, 40]. In this study we proposed a methodology based on the novel SNN architecture called NeuCube [34], for classifying spatio-temporal EEG data collected while subjects were performing 4 types of cognitive tasks and a relax mode.

NeuCube offers several advantages when compared to traditional information methods:
- Fast learning of STBD (only one pass data propagation);
- Higher accuracy of classification;
- Ability to adapt to new data through incremental learning (an evolving SNN is used as an output classifier [30, 36, 47]), that includes learning of new input patterns from data and new classes;
- Interpretation of the model for a better understanding of the EEG STBD and the processes that generated it.

Future research directions include:
- Experimentation of NeuCube-based models on other EEG data, e.g. [12];
- Parameter optimization using quantum inspired evolutionary algorithms [7, 54, 58];
- Adding genetic information in terms of GRN [5, 20, 21, 29, 38] to the model to help study the impact of genes on cognitive abilities, e.g. how much gene expression levels of neurotransmitters affect certain cognitive tasks;
- Testing the proposed method on new types of BCI, including neuro-rehabilitation [6, 68].
- Testing the proposed method in clinical environment for early diagnosis of cognitive decline;
- Extending the proposed method for predictive modelling and personalised prognosis [37].
- Improved visualisation of the SNNr and the classifier during the training and recall procedures for an improved understanding of the data and the brain processes.
- Implementation of the proposed method on neuromorphic hardware to explore its potential for a highly parallel computation [14, 15, 24, 51,59].

Acknowledgements

The work on NeuCube SNN started in 2012 and was initially supported by the EU FP7 Marie Curie project EvoSpike PIIF-GA-2010-272006, hosted by the Institute for Neuroinformatics at ETH/UZH Zurich (http://ncs.ethz.ch/projects/evospike). The NeuCube full development and the presented experimental results were further supported by the New Zealand-China Strategic Alliance project funded by the MBIE in New Zealand and by the Knowledge Engineering and Discovery Research Institute (KEDRI, http://www.kedri.info) of the Auckland University of Technology. Several people have contributed to the research that resulted in this paper, including: N. Scott, Y. Chen, J. Hu, Z. Hou, E. Tu, G. Indiveri. We would like to acknowledge the roles of the reviewers, who helped with their comments and suggestions to significantly improve the presentation of the paper. We would like to acknowledge Diana Kassabova and James C. Veale for proof reading the paper.

Vitae

Nikola Kasabov.
Fellow IEEE, Fellow RSNZ, DVF Royal Academy of Engineering, UK. Professor and Director of the Knowledge Engineering and Discovery Research Institute (KEDRI, www.kedri.aut.ac.nz) of the Auckland University of Technology, New Zealand.

Elisa Capecci.
PhD student at KEDRI (www.kedri.aut.ac.nz). The topic of her study - “Computational Modelling with Neurogenetic data in Neuroinformatics”, is intended towards mining EEG data related to cognition, neurological disorders and neurorehabilitation.

References